Inactivation of the Celf1 Gene that Encodes an RNA-Binding Protein Delays the First Wave of Spermatogenesis in Mice

نویسندگان

  • Marie Cibois
  • Gaella Boulanger
  • Yann Audic
  • Luc Paillard
  • Carole Gautier-Courteille
چکیده

BACKGROUND The first wave of spermatogenesis in mammals is characterized by a sequential and synchronous appearance of germ cells in the prepubertal testis. Post-transcriptional controls of gene expression play important roles in this process but the molecular actors that underlie them are poorly known. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the requirement for the RNA-binding protein CELF1 during the first wave of spermatogenesis in mice. Mice inactivated for Celf1 gene were not viable on pure genetic backgrounds. On a mixed background, we observed by histology and gene profiling by RT-qPCR that the testes of inactivated prepubertal mice were characterized by several features. (i) Spermiogenesis (differentiation of post-meiotic cells) was blocked in a subset of prepubertal inactivated mice. (ii) The appearance of the different stages of germ cell development was delayed by several days. (iii) The expression of markers of Leydig cells functions was similarly delayed. CONCLUSIONS/SIGNIFICANCE Celf1 disruption is responsible for a blockage of spermiogenesis both in adults and in prepubertal males. Hence, the spermiogenesis defects found in Celf1-inactivated adults appear from the first wave of spermiogenesis. The disruption of Celf1 gene is also responsible for a fully penetrant delayed first wave of spermatogenesis, and a delay of steroidogenesis may be the cause for the delay of germ cells differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of Musashi protein in spermatogenesis and male infertility

Background: Inactivation of transcription occurs during two phases of spermatogenesis. First, in spermatocytes entering the primary meiosis and the second in round and elongating spermatids. These stages of inactivated transcription demand extensive regulation of translation. Therefore, presence of the control on gene expression during spermatogenesis seems essential. In the cases that post-tra...

متن کامل

Expression Analysis of RNA-Binding Motif Gene on Y Chromosome (RBMY) Protein Isoforms in Testis Tissue and a Testicular Germ Cell Cancer-Derived Cell Line (NT2)

a key factor in spermatogenesis and disorders associated with this protein have been recognized to be related to male infertility. Although it was suggested that this protein could have different functions during germ cell development, no studies have been conducted to uncover the mechanism of this potential function yet. Here, we analyzed the expression pattern of RBMY protein isoforms in test...

متن کامل

I-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64

Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...

متن کامل

P-236: Haplotype Analysis of The H2B.W Gene in Severe Oligospermic and Azoospermic Infertile Men Referred to Royan Institute

Background: Recent studies demonstrated the multifactorial and chronic nature of male infertility, including mutations of some known spermatogenesis-related genes. The H2B family, member W (H2B.W) gene is one of the testis specific histone variant genes that encodes a sperm telomere-binding protein, required for reorganization and integration of sperm chromosomes. The objective of the present s...

متن کامل

Relationship between Expression of Sperm PAWP Protein with Fertilization Rate in Infertile Men Candidate for ICSI Technique

Backgroundm: Post-acrosomal sheath WW domain binding protein (PAWP) is one of the proteins that is expressed during spermatogenesis process and has several roles in sperm differentiation, fertilization, and early embryonic development. The aim of this study was assessment of the relationship between PAWP expression with fertilization rate in infertile men candidate for intracytoplasmic sperm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012